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Numerical solution of the Transient Free 
Convection in Magneto-Micropolar Fluid past 
vertical semi-infinite porous plate with Heat 

Generation, Mass Transfer and Constant Heat 
Flux subjected to Magnetic Field 

N.M. Mutua, M. N. Kinyanjui, J.K. Kwanza, F.K. Gatheri 
 

Abstract— Numerical solution of the Transient Free Convection in Magneto-Micropolar Fluid past vertical semi-infinite porous plate with 
Heat Generation, Mass Transfer and Constant Heat Flux subjected to Magnetic Field is studied. The plate considered is porous and the 
Micropolar incompressible fluid that is electrically conducting flows past the semi-infinite vertical inclined plate subjected to variable inclined 
magnetic field. Fluid is injected through the plate at a constant velocity. The general solution of the coupled governing non-linear partial 
equations is obtained from the equation of linear momentum, angular momentum, energy equation and concentration equation, which is 
valid for every value of time t. The Trivariate Spectral Collocation Method (TSCM) and a MATLAB computer program are employed in 
solving the arising non-linear partial differential equations in order to generate the velocity, angular momentum, temperature and 
concentration profiles. The effects of the various parameters entering into the flow problem are presented graphically and discussed. These 
parameters include the Magnetic parameter, the Schmidt number, the Micropolar parameter, the suction parameter, the Eckert number, the 
Soret number, the Prandtl number, the Grashof number, the heat source parameter, Dimensionless material parameter and Micro-rotation 
parameter. The values proportional to coefficient of Skin friction, Nusselt number and Sherwood number are also computed numerically, 
tabulated and discussed. The effect of changing the parameters mentioned above is observed either to increase, to decrease or to have no 
effect on the velocity profiles, the angular momentum profiles, the temperature profiles, the concentration profiles, the skin friction and the 
rates of heat and mass transfer. 
 
Index Terms— Heat Flux, Magnetohydrodynamics, Magnetic Field, Micropolar Fluid, Prorous, Semi-infinite, Trivariate Spectral Collocation.   
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HE equations governing hydrodynamics flows are highly 
non-linear PDEs thus not possible to obtain analytical so-
lutions. In this chapter, mathematical analysis of the study 

is given, governing equations are stated and non-
dimensionalised, Trivariate Spectral Collocation Method and a 
MATLAB algorithm are employed in solving the PDEs. Final-
ly, investigations are carried out on how the variation of the 
various parameters affect the linear velocity, angular velocity, 
temperature and concentration profiles. The rate of heat and 
mass transfer are also computed by applying the Nusselt 
number and the Sherwood number. 
Magnetohydrodynamic (MHD) convection micropolar flow 
has many important engineering applications in  cooling  hot 
material  like  steel  plates  at  ROT [1], in cooling of combus-
tion engines and electronic microchips  [2], in setting up the 
ink-jet printers [3,4],  in evaporation of  refrigerant-oil  mixture  
[5],  in Erosion  threshold  of  a  liquid  immersed granular bed 
[6], analysing  blood  flow [7,24], polymeric suspensions [8], 
lab-on-a chip [9,25] rigid-rod epoxies [10]. 
The micropolar theory shows micro-rotation effects as well as 
micro inertia contributions has many applications such as pol-
ymer fluids, liquid crystals, animal bloods, unusual lubricants, 
colloidal and suspension solutions, colloidal fluids, liquid 
crystals, and polymeric suspension. 
[11] investigated micropolar fluid over a stretching surface in a 
non-Darcian porous medium when viscosity and thermal 
conductivity vary with temperature in presence of magnetic 
field. [12] was the first to formulate the theory of micro polar 
fluids.  In essence, the theory introduces new material parame-
ters, an additional independent vector field, the micro rotation 
and new constitutive equations, which must be solved simul-
taneously with the usual equations for Newtonian flow. The 
desire to model the non-Newtonian flow of fluid containing 
rotating micro-constituents provided initial motivation for the 
development of the theory, but subsequent studies have suc-
cessfully applied the model to a wide range of applications 
including blood flow, lubricants, porous media, turbulent 
shear flows and flowing capillaries and micro channels [13].  
[14] analysed Melting Heat Transfer and Induced-Magnetic 
Field Effects on the Micropolar Fluid Flow towards Stagnation 
Point using Boundary Layer Analysis. Their results indicated 
that due to the formation of boundary layer on melting surface 
(region of low heat energy) in the presence of induced mag-
netic field, space and temperature dependent internal heat 
generation enhances the heat transfer rate. [26] explored the 
Chemical reaction and thermal radiation effects on MHD mi-
cropolar fluid past a stretching sheet embedded in a non-
Darcian porous medium. It was established that the increase 
in Schmidt number and chemical reaction caused a decrease in 
the skin-friction coefficient and an increase in the mass trans-
fer rate.   
[16] studied Similarity Solution of Unsteady Boundary Layer 
Flow of Nanofluids past a Vertical Plate with Convective Heat-
ing. It was inferred that the velocity and temperature of 

nanofluid decreases as a result of increasing unsteadiness pa-
rameter while the velocity and the temperature distributions 
decrease by decreasing Biot number. Effects of Variable Viscos-
ity and Thermal Conductivity of Unsteady Micropolar Fluid 
under Mixed Convection in Presence of Uniform Magnetic 
Field on Stretching Surface was studied by [17]. In their study 
it was observed that within the boundary layer thermal con-
ductivity and viscosity parameter along with other parameters 
have a significant effect on velocity, micro-rotation, tempera-
ture distribution and magnetic field. 
[18] researched on MHD and radiation effects on mixed con-
vection unsteady flow of micropolar fluid over a stretching 
sheet. They found out that there is a smooth transition from 
small-time solution to the large-time solution.  The Numerical 
study of MHD micropolar Carreau nanofluid in the presence 
of induced magnetic field was carried out by [19]. It was noted 
that the dimensionless velocity is enhanced for the Weissen-
berg number and the power law index while reverse situation 
is studied in the thermal and the concentration profile. 
[20] investigated Soret and Dufour Effects on Steady free Con-
vection in MHD Micropolar Fluid Flow, Mass and Heat Trans-
fer with Hall Current. It was observed that the temperature 
profile increases as Pr and Df increases 

 
2 MODEL DESCRIPTION 
2.1 Mathematical Formulation 
Consider the Stokes problem of free convection unsteady flow 
of a viscous incompressible electrically conducting micropolar 
fluid between along the semi-infinite (unbounded in one di-
rection or dimension) porous vertical plate in presence of a 
transverse magnetic field B applied parallel to y-axis which is 
normal to the plate. The temperature of the plate is held at 
constant value of sT  and the heat flux is considered as con-
stant, the thermal dispersion effect is also included. We have 
considered z-axis along the plate in the vertical direction and 
y-axis perpendicular to the plate. The flow configuration of the 
semi-infinite plate and the two-dimensional Cartesian coordi-
nate system are shown in figure 1. 
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Fig. 1. Physical Model and Coordinate system 

The plate is semi-infinite along y and z-axis directions and is 
non-conducting, thus all physical quantities will be functions 
of y, z and t only. Injection of the fluid takes place through the 
porous walls of the plate with uniform velocity W0, which is 
greater than zero for injection and less than zero for suction. It 
is assumed that no applied or polarization voltages exist since 
the plate is insulated. This corresponds to the case where no 
energy is being added or extracted from the fluid by electrical 
means. (i.e. electric field 0=E ). 
In general, the electric current flowing in the fluid gives rise to 
an induced magnetic field which perturbs the applied magnet-
ic field. Since magnetic Reynolds number is very small for me-
tallic liquids and partially ionized fluids so the induced mag-
netic field may be neglected in comparison to the applied one. 
Under the above assumptions, the governing equations of the 
flow with the Boussinesq’s approximation can be put in the 
following form; 
Mass Conservation Equation 

0=
∂
∂

+
∂
∂

z
w

x
u .       (1) 

Linear Momentum Conservation Equation 

( ) ( )

*

2
0

2

2
'**

pK
uUB

CCgTTg
z
Nk

z
uk

z
uw

x
uu

t
u

ρ
υ

ρ
σ

ββ
ρρ

µ

−−

−+−+
∂
∂









+

∂
∂








 +
=

∂
∂

+
∂
∂

+
∂
∂

∞∞

(2) 

Equation of conservation of Angular Momentum 
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Equation of Energy 
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Species Concentration Equation 
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Subject to the Boundary Conditions: 
( ) ( ) ( ) ( )
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2.2 Non-dimesionalisation 
Nondimensionalization is the process of removal of units from 
physical quantities by a suitable substitution of variables. A 
non-dimensionalised equation is one in which each term in the 
equation is dimensionless. Dynamic similarity requires that 
the ratio of all forces be the same. The ratio of different forces 
produces many of the key non-dimensional parameters in flu-
id mechanics. These groups occur regularly when dimensional 
analysis is applied to fluid-dynamical problems. They can be 
derived by considering forces on a small volume of fluid. They 
can also be derived by non-dimensionalizing the differential 
equations of fluid flow.  
Making the values dimensionless using the following substitu-
tion: 
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Introducing the following non-dimensionless quantities which 
are of engineering interest; 

Prandtl Number,
k
C

Ck
p

p

νρ
ρ
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==Pr , Grashof Number, 
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==∆= , Dimensionless material parameters 

Here u and w  are velocity components associated with x  and 
z  directions measured along and normal to the vertical plate 

respectively,ν the kinematic coefficient of viscosity, k  the vor-
tex viscosity, ρ  the density of the fluid, *g  the acceleration 

due to gravity, β  the coefficient of thermal expansion, T  the 

temperature of the fluid in the boundary layer, ∞T  the free 
steam temperature, N the angular velocity, γ the spin gradi-

ent viscosity, j the microinertia per unit mass, 'k the thermal 

conductivity, pC  specific heat at constant pressure and Q  the 

heat generation.  
Non-dimensionalizing equations (2) -(5) yields the final set of 
equations as; 
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The boundary conditions are transformed as; 
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3 TRIVARIATE SPECTRAL COLLOCATION METHOD OF 
SOLUTION FOR TWO DIMENSIONAL PARTIAL 
DIffERENTIAL EQUATIONS ARISING IN flUID 
MECHANICS 

As demonstrated in this document, the numbering for sections 
upper case Arabic numerals, then upper case Arabic numerals, 
separated by periods. Initial paragraphs after the section title 
are not indented. Only the initial, introductory paragraph has 
a drop cap. 
In this section, we describe the algorithm for solving a system 
of two-dimensional partial differential equations that defines 
the problem of the transient free convection in magneto mi-
cropolar fluid with heat generation, mass transfer and con-
stant heat flux. The present investigation on the numerical 
method involves application of a purely spectral collocation 
discretization is applied on space and time variables. The sys-
tem of PDEs considered takes the form; 
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Eqs.3.16-3.19 are solved subject to boundary conditions 
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and the initial conditions 
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In view of the non-linearity in Eq.16 and the coupling of the 
partial differential equations Eqs.14-18, we simplify the 
differential equations using relaxation method. In the relaxa-
tion method, it is assumed that all nonlinear terms are known 
from the previous iteration while at the same time decoupling 
the system of differential equations using the Gauss-Seidel 
approach. Applying the relation method, we obtained the de-
coupled system of equations; 
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where small s signifies the previous iteration level. Using ini-
tial approximations to solutions of the partial differential 
equations as 0u , 0N , 0θ , and 0φ , the Gauss-Seidel relaxation 
scheme Eqs.(20)-(23) is solved iteratively until the solution 
converges. As a rule of thumb, a simple choice of the initial 
approximation to the solution is a polynomial that satisfies the 
given boundary conditions. The semi-infinite domain of ap-
proximation )[ ∞,0 is truncated into a finite domain 

[ ]L,0 where L is taken to be large enough to approximate 
conditions at infinity. The finite domain of approximation is 
discretized into Chebyshev Gauss-Lobatto nodes defined in 
Eq. (3.61) as 
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Here [ ]ba, is the interval of approximation in the x -direction 
and T is the final time. The objects xN , zN , tN are the grid 
points in x , z , and t , respectively. In the solution process, the 
approximate solution of the PDEs Eqs. (14)-(18) is assumed to 
be the Trivariate Lagrange interpolating polynomials. For il-
lustrative purposes, we shall consider the solution to the un-
known function ( )tzxu ,, that takes the form; 
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The spatial differentiation matrix in x is approximated at the 
collocation nodes ( )kji tyx ,ˆ,ˆ , for ,,.......,2,1,0 zNj =  and 

,,.......,2,1,0 tNk = as follows; 
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ˆ  is the standard first order Chebyshev 

differentiation matrix of size ( ) ( )11 +×+ xx NN as defined by 
[Magagula, 2016]. The higher order differentiation matrices 

are obtained using matrix multiplication. The vector 
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where T  denotes matrix transpose. Similarly, the spatial 
differentiation matrix in y is approximated at the collocation 
points ( )kji tzx ˆ,ˆ,ˆ , for xNi ...,2,1,0= and tNk ,...,2,1,0= as 
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Where ,,......,2,1,0,,
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= are entries of a 

standard first order Chebyshev differentiation matrix of 
size ( ) ( )11 +×+ zz NN . Higher order differentiation matrix 
with respect to z  can be obtained using matrix multiplication. 
Finally, we approximate the differentiation matrix in t  at the 
collocation points ( )kji tzx ˆ,ˆ,ˆ , for xNi ...,2,1,0= , 

and zNj ,...,2,1,0= , as; 
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Where ,,......,2,1,0,,
2
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= are entries of a 

standard first order Chebyshev differentiation matrix of 
size ( ) ( )11 +×+ tt NN . We remark that the bar in D at Eq. (28) 

and double bar in D  at Eq. (29) distinguishes the differentia-
tion matrix in z  and t , respectively, from that in x . We note 
that in generating the sequence of vec-

tors t

j

k
z NkNj ,......,2,1,0,,.....,2,1,0, == , the superscript j is 

varied of each subscript k . Such a pattern will be useful when 
assembling the system of linear algebraic equations to obtain 
coefficient matrices. The partial derivatives of the un-

knowns N ,θ , φ are approximated in a similar manner.  
 
Using Eq. (26), Eq. (28) and Eq. (29) in the scheme Eqs. (20)-
(23), we obtain a ( ) ( ) ( )111 +×+×+ xyt NNN  decoupled system 

of linear algebraic equations given by; 
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where Ι is an identity matrix of size ( ) ( )11 +×+ xx NN . The 
right-hand side of equations Eqs. (30)-(33) is defined as 
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where 0 is a zero vector of size ( ) ( ) ( ) 1111 ×+×+×+ xyt NNN . 

The initial condition ( )tzxu ,,  when evaluated at the colloca-
tion points yields 
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The initial conditions corresponding to the other unknowns 
are evaluated in a similar manner. The initial conditions re-
duce Eqs. (30)-(33) to 
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Eqs. (36)-(39) are solved subject to the boundary conditions 
( ) ( ) ( ) ( )
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to yield the approximate numerical solution by writing a 
computer code using MATLAB. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019                                                                                                        582 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org  

3.1 Nusselt number, Sherwood number and Local Skin-
friction Coefficient 

The quantities of main engineering interest in the problem at 
hand are the Nusselt number, the Sherwood number, and the 
shearing stress on the plate. The Nusselt number and the 
Sherwood number physically indicate the rate of heat transfer 
and the rate of mass transfer respectively. The equation defin-
ing the wall shear stress is 

( ) ( ) 0
0

=
=

+
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+= z
z

w zkN
z
ukµτ    (42) 

Thus, Skin Friction Coefficient, fC , is computed as 
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The above relation shows that the skin friction coefficient fC  

is proportional to [ ]
0
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The Heat flux at the surface is calculated as 
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The rate of heat transfer in terms of the Nusselt number at the 
plate is given by 
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The mass flux is defined as follows 
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The rate of mass transfer in terms of the dimensionless Sher-
wood number is defined as follows 

( ) ( )∞∞

=

−
=

−








∂
∂

−
=

TTD
xm

CCD
z
CxD

Sh
wM

w

wM

z
M

x
0   (48) 

 
4 RESULTS AND DISCUSSION 
The effect of various parameters on the Numerical solution of 
the Transient Free Convection in Magneto-Micropolar Fluid 
with Heat Generation, Mass Transfer and Constant Heat Flux 
has been investigated. Using the aforementioned numerical 
procedure, the numerical results obtained using the governing 
equations (36) -(39) subject to the boundary conditions (40) are 
displayed through graphs and tables below. To study the 
physical situation of these problems, we have computed the 
numerical values of the velocities, angular momentum, tem-
perature, concentration, within the boundary layer and also 
found the skin friction coefficients, Nusselt and Sherwood 
number at the plate. It can be seen that the solutions are affect-

ed by the non-dimensional parameters and numbers, namely 
suction parameter S , local Grashof number Gr , local modified 
Grashof number Gc , permeability parameter K , Magnetic 
parameter M , Prandtl number Pr , Eckert number Ec , 
Dufour number Du , Schmidt number Sc , Soret number Sr , 
heat source parameterα , Micro inertia per unit mass J , Mate-
rial parameterκ , Nusselt number Nu , Sherwood number xSh  
and dimensionless material (Micropolar) parameter ∆ . The 
numerical solutions regarding the velocity, angular momen-
tum, temperature and concentration distributions are present-
ed for different selected values of the established dimension-
less parameters. The influences of these various parameters on 
the velocity angular momentum, temperature and concentra-
tion fields are presented in Figure 2 through Figure 18 and 
some of the numerical results regarding coefficients skin fric-
tion and heat transfer are given in tabular form in Table 1 and 
Table 2. The results are discussed in section 4.2. 

4.1 Results  
4.1.1 Effect of various parameters on the velocity 

profiles 

 
Fig. 2. Velocity Profiles varying Suction Parameter  S  
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Figure 3: Velocity Profiles varying Magnetic Parameter  M  
 
 

 
Fig. 4. Velocity Profiles varying Permeability Parameter K  
 
 

 
Fig. 5. Velocity Profiles varying Local Grashof Number  Gr  
 
 

 
Fig. 6. Velocity Profiles varying Modified Grashof Number  Gc  
 

 
Fig. 7. Velocity Profiles varying Micro-rotation Parameter ∆  

 
4.1.2 Angular Momentum Field Profiles 

 
Fig. 8. Angular Momentum Field Profiles varying Suction Parameter S  

 
 

  
Fig. 9. Angular Mome ntum Field Profiles varying Dimensionless Material 

Parameter λ  
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Fig. 10. Angular Momentum Field Profiles varying Micro-rotation Parame-

ter ∆  
 
 

 
Fig. 11. Angular Momentum Field Profiles varying Micro inertia per unit 

mass J Parameter 

 
4.1.3 Temperature Field Profiles 

 

 

Fig. 12. Temperature Profiles varying Suction Parameter  S  
 
 

 
Fig. 13. Temperature Profiles varying Prandtl Number Pr  

 
 

 
Fig. 14. Temperature Profiles varying Eckert Number Ec  

 
 

 
Fig. 15. Temperature Profiles varying Micro-rotation Parameter ∆  
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Fig. 16. Temperature Profiles varying Heat Source Parameter α  

 
4.1.4 Concentration Field Profiles 

 
Fig. 17. Concentration Profiles varying Suction Parameter S  

 

 
Fig. 18. Concentration Profiles varying Schmidt Number  Sc  

 

 
4.1.5 Computed values of skin friction, the local 

Nusselt number and Sherwood number 
TABLE 1 

VALUES OF xCf , xNu , xSh FOR DIFFERENT  VALUES OF J  

J  Present study [21] 

xCf  xNu  xSh  xCf  xNu  

1.0 3.61662 -1.27121 -1.29801 3.27416 -1.18153 
2.0 3.63745 -1.27089 -1.29801 3.26423 -1.18121 
3.0 3.64335 -1.27078 -1.29801 3.26279 -1.18089 
4.0 3.64613 -1.27073 -1.29801 3.26267 -1.18089 
5.0 3.64775 -1.27070 -1.29801 3.26282 -1.18059 
6.0 3.64881 -1.27067 -1.29801 3.26301 -1.18025 

 
TABLE 2 

VALUES OF xCf , xNu , xSh FOR DIFFERENT  VALUES OF ∆  

∆  Present study [21] 

xCf  xNu  xSh  xCf  xNu  

0.2 3.95161 -1.26175 -1.29766 3.51345 -1.14611 
0.5 3.61682 -1.27057 -1.29766 3.27416 -1.18153 
1.0 3.07482 -1.28045 -1.29766 3.02336 -1.23349 
1.5 2.49479 -1.28614 -1.29766 2.86484 -1.28266 
2.0 1.68753 -1.28960 -1.29766 2.75206 -1.33076 
2.5 0.12885 -1.29321 -1.29766 2.66539 -1.37831 

 
TABLE 3 

VALUES OF xCf , xNu , xSh FOR DIFFERENT  VALUES OF α  
α  Present study [21] 

xCf  xNu  xSh  xCf  xNu  

0.5 3.61682 -1.27057 -1.29766 3.27416 -1.18153 
0.8 3.70005 -1.14084 -1.29766 6.20671 -3.68331 
1.0 3.76059 -1.04774 -1.29766 8.55529 -6.38748 
1.5 3.93275 -0.78698 -1.29766 15.51437 -17.49511 
2.0 4.14135 -0.47553 -1.29766 23.76422 -35.84558 
2.5 4.39726 -0.09525 -1.29766 33.10350 -62.54968 

 
TABLE 4 

VALUES OF xCf , xNu , xSh FOR DIFFERENT  VALUES OF λ  

λ  Present study [21] 

xCf  xNu  xSh  xCf  xNu  

0.2 3.61682 -1.27057 -1.29766 3.27416 -1.18153 
0.4 3.62175 -1.27051 -1.29766 3.24942 -1.18572 
0.5 3.62388 -1.27048 -1.29766 3.24500 -1.18718 
0.6 3.62584 -1.27045 -1.29766 3.24258 -1.18840 
0.8 3.62931 -1.27039 -1.29766 3.24073 -1.19034 
1.0 3.63223 -1.27035 -1.29766 3.24076 -1.19182 
 

TABLE 5 
VALUES OF xCf , xNu , xSh FOR DIFFERENT  VALUES OF Pr  

Pr  Present study [21] 

xCf  xNu  xSh  xCf  xNu  

0.2 4.73292 -0.62824 -1.29766 7.927539 -2.109994 
0.71 3.61682 -1.27057 -1.29766 9.822492 -4.726112 
0.73 3.58278 -1.30321 -1.29766 9.869625 -4.819553 
1.0 3.19873 -1.77259 -1.29766 10.446450 -6.076511 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019                                                                                                        586 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org  

5.0 2.08072 -9.61183 -1.29766 16.005450 -27.739200 
7.0 2.00606 -13.60821 -1.29766 18.124500 -40.557210 

 
TABLE 6 

VALUES OF xCf , xNu , xSh FOR DIFFERENT  VALUES OF Gr  

Gr  Present study [21] 

xCf  xNu  xSh  xCf  xNu  

0.5 2.72811 -1.28170 -1.29766 9.822492 -4.726112 
1.0 3.61682 -1.27057 -1.29766 11.018580 -2.537850 
1.5 4.50914 -1.25664 -1.29766 12.156370 -1.796058 
2.0 5.40612 -1.23971 -1.29766 13.238690 -1.416348 5 
2.5 6.63904 -1.22026 -1.29766 14.273790 -1.182411 6 
3.0 8.52117 -1.19810 -1.29766 15.268690 -1.022038 

 
TABLE 7 

 VALUES OF xCf , xNu , xSh FOR DIFFERENT  VALUES OF Sc  

 
 

 
 
 

TABLE 8 
VALUES OF xCf , xNu , xSh FOR DIFFERENT  VALUES OF Ec  

Ec  Present study [19] 

xCf  xNu  xSh  xCf  xNu  

0.0 3.61091 -1.29678 -1.29766 1.44964 -0.226782 
0.1 3.61682 -1.27057 -1.29766 1.60626 -0.247826 
0.2 3.62275 -1.24415 -1.29766 1.86961 -0.232378 
0.3 3.62870 -1.21753 -1.29766 2.35643 -0.216932 
0.4 3.63468 -1.19071 -1.29766 2.61346 -0.188763 
0.5 3.64068 -1.16368 -1.29766 2.83685 -0.167242 
 

TABLE 9 
VALUES OF xCf , xNu , xSh FOR DIFFERENT  VALUES OF S  

 
 

4.2 Discussion  

From fig.3 Velocity u increases significantly on increasing the 
Magnetic parameter M . This is as a result of Lorentz force 
which acts in the direction of the fluid flow to produce drag 

thus creating resistance to the flow. This force increases the 
velocity of the fluid. Thus, we conclude that the magnetic field 
has accelerating influence on the fluid flow. Similarly, on vary-
ing magnetic parameter M  and taking magnetic field to be a 
constant, the result agrees with L. Ramamohan Reddy et al., 
(2017). 
From fig. 8 increase in suction parameter S , angular momen-
tum Ν  decreases. This is owing to the fact that the suction 
decelerates the boundary layer flow. Greater suction corre-
sponds physically to removal of micropolar fluid via the wall. 
This destroys momentum and causes the boundary layer to 
adhere to the wall thereby stabilizing boundary layer growth 
due to which the primary velocity of the fluid decreases.  
However, increasing the suction after the cross-over of the 
profiles, amounts to acceleration in velocity. 

In Figure 12 Temperatureθ monotonically decreases on in-
creasing suction parameter S . This is attributed to the fact that 
thickness of the thermal boundary layer decreases with the 
increase of the suction parameter.  
From Figure 13, Temperatureθ monotonically decreases on 
increasing Prandtl number Pr . It is evident that the tempera-
ture in the boundary layer falls very quickly for large value of 
the Prandtl number because of the fact that thickness of the 
boundary layer decreases with decreases with an increase in 
the value of the Prandtl number. 
From Figure 17, Concentration φ  monotonically decreases on 
increasing Suction parameter S . The effect of increasing val-
ues of the suction parameter S  is to decrease the Concentra-
tion boundary layer thickness which consequently decreases 
the concentration distribution. 
From Figure 18, Concentration φ  monotonically decreases on 
increasing Schmidt parameter Sc . The Schmidt number em-
bodies the ratio of the momentum to the mass diffusivity. The 
Schmidt number therefore quantifies the relative effectiveness 
of momentum and mass transport by diffusion in the hydro-
dynamic (velocity) and concentration (species) boundary lay-
ers. It is observed that as the Schmidt number increases the 
concentration decreases. 
In Tables 1-9, the numerical analysis of xCf , xNu and xSh on 
different physical parameters is displayed. 
It is observed from tables 1, 3, 4, 6 and 8 that increase in Micro 
inertia per unit mass parameter J , Heat Source parameter α , 

Dimensionless material parameter λ , local Grashof number 
Gr  and Eckert number Ec enhance the local skin-friction 

Sc  Present study [23] 

xCf  xNu  xSh  xCf  xNu  xSh  

0.1 4.86132 -1.24375 -0.59438 2.43066 -1.98056 -0.26445 

0.2 4.57244 -1.25100 -0.70913 2.28622 -2.02576 -0.33746 

0.3 4.29981 -1.25726 -0.83766 2.14991 -2.12458 -0.41345 

0.4 4.04777 -1.26256 -0.97927 2.02389 -2.14224 -0.45176 

0.5 3.81966 -1.26696 -1.13318 1.90983 -2.16882 -0.50124 

0.6 3.61682 -1.27057 -1.29766 1.80841 -2.17432 -0.53824 

S  Present study [22] 

xCf  xNu  xSh  xCf  xNu  xSh  

0.1 4.72706 -0.29448 -0.51702 1.7996514 -1.247951 -0.916867 
0.5 4.62565 -0.45858 -0.65062 1.6512058 -1.263071 -0.930092 
1.0 4.37718 -0.70206 -0.84229 1.4834408 -1.626014 -1.048395 
1.5 4.02617 -0.98307 -1.05912 1.3037306 -1.800411 -1.106039 
2.0 3.61150 -1.29417 -1.29766 1.1214543 -2.021411 -1.146248 
2.5 3.17305 -1.62731 -1.55392 0.9470242 -2.248346 -1.175462 
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coefficient xCf , but decreases local Nusselt number xNu while 
Sherwood number xSh remains constant. Increasing the value 
of Ec  leads to an increase in the velocity of the fluid and 
hence the observed increase in the magnitude of the values of 
both shear stresses. Increasing Ec  results to a lower rate of 
species transportation leading to a decrease in xSh . Increase in 
Ec  translates to a lower value of the temperature difference, 
and to a reduced rate of heat transfer. Increase in α  enhances 
convection currents on the surface of the sheet, leading to in-
crease in xCf . Increase in α  leads to a thicker thermal bound-
ary layer, leading to lower temperature gradients leading to a 
decrease in xNu . 
Moreover, from tables 2, 5, 7, and 9, the local Skin friction falls 
by enlarging the viscosity ratio (Micropolar parameter)  ∆ , 
Prandtl number Pr , Schmidt number Sc and Suction parame-
ter S but enhances the local Nusselt number xNu while Sher-
wood number xSh remains constant for ∆  and Pr . Increase in 

Sc and S enhances the Sherwood number xSh . Increase in ∆  
leads to a thinner thermal boundary layer, resulting to an in-
creased rate of heat transfer. Decrease in the velocity profiles 
leads to a reduced rate of transportation of species away from 
the surface of the stretching sheet, leading to the observed in-
crease in the value of xSh . Suction accelerates the velocity of 
the fluid particles leading to higher flow velocities. Thermal 
boundary layer thickness decreases with increase in S , leading 
to an increased rate of heat transfer. Decrease in concentration 
boundary layer thickness leads to an increased rate of species 
transportation, and hence to increase in the Sherwood num-
ber xSh . 
From the table 1 it is observed that the coefficient proportional 
to the skin friction increases primarily (from 1 to 4) then de-
creases. In both cases the rate of change is very small. Whereas 
in the case of Nusselt number the rate of decrease is monoto-
nous, although slow. Thus, it may be considered that the micro 
inertia has a very little impact on the coefficient of skin friction 
and Nusselt numbers. 
In the table 2 only the dimensionless material parameter λ  has 
been varying, keeping other parameters as fixed. It is observed 
that both the tabulated values are decreasing with the increase 
in ∆  and the rate of decrease has no significant difference. It 
can be observed that there is an inverse behavior of the curves. 
This can be explained from the fact that viscosity is taken to 
vary inversely proportional to temperature thus a varying 
change of the curves. 
 
5 CONCLUSION  

i. Skin friction xCf increases with increasing J , α , λ , 
Gr , Ec and xNu decreases with  increasing ∆ , Pr , 
Sc and S  

ii. Nusselt number xNu  increases with increasing ∆ , 
Pr , Sc , S while xNu decreases with increasing J , 
α , λ , Gr , and Ec . 

iii. Sherwood number xSh increases with enhancing Sc , 
S but remains constant on increasing the parame-
ters J , ∆ ,α , λ , Pr , Gr , and Ec . 

iv. The velocity profiles are enhanced on increas-
ing M , Gr , Gc and falls on increasing S , K , ∆ . Mag-
netic field has accelerating influence on the fluid flow, 
as a result of Lorentz force which acts in the direction 
of the fluid flow. On increasing suction parameter S , 
velocity u increases in the case of injection. This is 
due to increase in pressure forces which causes the 
fluid to accelerate. 

v. The angular momentum profiles increase with in-
creasing S , λ , J . However, they decrease in the re-
verse direction on increasing ∆ , λ , S , J . This behav-
iour is accounted for by that fact this layer presents a 
transition state after which the opposite effect, i.e. 
( )ηh increases with an increasing λ till the free stream 

state is attained. 
vi. Increasing the parameters Ec and α increases the 

temperature profiles but decreases on increasing 
S and Pr while the temperature profiles are not af-
fected on increasing ∆ . 

vii. Concentration profiles decreases on increasing 
S and Sc . 
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